Independent Components of EEG Activity Correlating with Emotional State
نویسندگان
چکیده
منابع مشابه
Eeg Sleep Spindle Processing with Independent Components Analysis
Sleep spindles are bursts of rhythmic activity characterized by progressively increasing, then gradually decreasing amplitude, present predominantly in stages 2, 3 and 4 of the sleep electroencephalogram (EEG). Topographic analyses of sleep spindle incidence suggested the existence of two distinct sleep spindle types, “slow” and “fast” spindles at approximately 12 and 14 Hz respectively. There ...
متن کاملIdentification of anti-correlated resting-state networks using simultaneous EEG-fMRI and Independent Components Analysis
In the absence of an explicit task, temporal synchrony is maintained across brain regions. Taking advantage of this synchrony, resting-state fMRI has been used extensively to identify resting state networks (RSN) [1]. Fox et al. have reported that the default mode network (DMN) is anti-correlated with the task positive network (TPN) [2], reflecting the competing demands of these two networks. T...
متن کاملAnalysis of the EEG dynamics of epileptic activity in gelastic seizures using decomposition in independent components.
OBJECTIVE Gelastic seizures are a frequent and well established manifestation of the epilepsy associated with hypothalamic hamartomas. The scalp EEG recordings very seldom demonstrate clear spike activity and the information about the ictal epilepsy dynamics is limited. In this work, we try to isolate epileptic rhythms in gelastic seizures and study their generators. METHODS We extracted rhyt...
متن کاملClassification of independent components of EEG into multiple artifact classes.
In this study, we aim to automatically identify multiple artifact types in EEG. We used multinomial regression to classify independent components of EEG data, selecting from 65 spatial, spectral, and temporal features of independent components using forward selection. The classifier identified neural and five nonneural types of components. Between subjects within studies, high classification pe...
متن کاملSemi-automatic identification of independent components representing EEG artifact.
OBJECTIVE Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals. However, the identification and interpretation of independent components is time-consuming and involves subjective decision making. We developed and evaluated a semi-automatic tool designed for clustering independent components fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Brain Sciences
سال: 2020
ISSN: 2076-3425
DOI: 10.3390/brainsci10100669